Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
II	PART-III	CORE ELECTIVE-3	P23MA2E3B	MATHEMATICAL STATISTICS

Date		ion: 30	0.04.2025/AN	Time: 3 hours	Maxim	num: 75 Marks	
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION - A (10 X 1 = 10 Marks)</u> Answer <u>ALL Questions.</u>				
CO1	K1	1.	If X and Y are independ distribution of X,given a) poisson	X+Y is.	tes then the condit c) normal		
CO1	K2	2.	The random variables $f(x_1,x_2)=$.	X_1 and X_2 are said	to be stochastically	independent iff	
CO2	K1	3.	a) $f_1(x_1)$ b If $(1-2t)^{-6}$, $t < \frac{1}{2}$ is th monvariance is. a) 3				
CO2	K2	4.	a) 3 If X _i (i=1,2,n) denote a distribution. a) normal			$=\sum_{1}^{n} \left(\frac{X_{i} - \mu}{\sigma}\right)^{2} \text{ has } -$ d) chi-square	
CO3	K1	5.	a) normal If $X_i=i, i=1,2,n$ then the a) $\frac{n+1}{2}$			d) $\frac{n^2+1}{12}$	
CO3	K2	6.	If F has an F distribution distribution with parama) $\frac{r_1}{r_2}$	neters.			
CO4	K1	7.	a) $\frac{r_1}{r_2}$ the If X_1 , X_2 , X_N is a rand the m.g.f of $\sum_{i=1}^{n} X_i$ is a) $[M(\frac{t}{n})]^n$ b		distribution with m c) $[M(t)]^n$		
CO4	K2	8.	The sum of n mutually variables has a distr	stochastically inde	ependent normally o	distributed d) binomial	
CO5	K1	9.	Let \bar{X} denote the mean distribution with $\alpha=2$ a	of a random sample and β =4 then the variation	le of size 128 from a	,	
CO5	K2	10.	Let $\overline{X_n}$ and S_{n^2} denote r sample of size n from a a) converge stochastical c) diverge stochastically	respectively, the me distribution that:		** -	
Course Outcome	Bloom's K-level	Q. No.	SECTION - B (5 X 5 = 25 Marks) Answer ALL Questions choosing either (a) or (b)				
CO1	K2	11a.	Let X denote the rand lower bound for P _r (-2<			13 then find the	

CO1	K2	11b.	Let X_1 and X_2 have the joint p.d.f $f(x_1,x_2) = \frac{x_{1+2x_2}}{18}$ where (x_1,x_2)				
			= $(1,1),(1,2),(2,1),(2,2)$ and zero elsewhere. Find the marginal p.d.f of X_1 and				
			X_2 . Also find $P_r(X_{1=3})$ and $P_r(X_{2=2})$.				
CO2	K2	12a.	Derive the m.g.f of gamma distribution and hence find the mean and				
002	112	124.	variance of the distribution				
			(OR)				
000	IZO	1.01-					
CO2	K2	12b.	Let X be $n(\mu, \sigma^2)$ so that $P_r(X < 89) = 0.90$ and $P_r(X < 94) = 0.95$. Find μ and σ^2				
CO3	КЗ	13a.	Let X be $n(\mu, \sigma^2)$ so that $P_r(X < 89) = 0.90$ and $P_r(X < 94) = 0.95$. Find μ and σ^2 Show that $S^2 = \frac{1}{n} \sum (X_i - \overline{X})^2 = \frac{1}{n} \sum X_i^2 - \overline{X}^2$ where $\overline{X} = \frac{1}{n} \sum X_i$				
			(OR)				
CO3	КЗ	13b.	Let X denote the p.d.f $f(x)=1,0 < x < 1$, zero elsewhere. Show that the random				
	110	100.	variable Y=-2logX has a chi-square distribution with 2 degrees of freedom.				
CO4	КЗ	14a.	Let X_i (i=1,2,n) denote a random sample of size n from $n(\mu, \sigma^2)$. Prove that				
			$Y=\sum_{1}^{n}(\frac{X_{i}-\mu}{\sigma})^{2}$ has a chi-square distribution with n degrees of freedom.				
			(OR)				
CO4	КЗ	14b.	If \bar{X} is the mean of a random sample of size n from a normal distribution with				
			mean μ and variance 100. Determine n so that $P_r(\mu - 5 < \bar{X} < \mu + 5) = 0.954$				
CO5	K4	15a.	Compute an approximate probability that the mean of a random sample of				
			size 15 from a distribution having p.d.f $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & elsewhere \end{cases}$, is between $\frac{3}{5}$ and				
			one is from a distribution flaving plant (1), elsewhere is setween 5				
			$\left \frac{4}{-} \right $				
			5 (OP)				
005	T.7.4	1 51.	(OR)				
CO5	K4	15b.					
			$U_n = \frac{Y_n - np}{\sqrt{np(1-p)}} \sim n(0,1).$				

Course Outcome	Bloom's K-level	Q. No	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$
CO1	K4	16a.	State and Prove chebyshev's inequality (OR)
CO1	K4	16b.	Let $f(x,y) = 2,0 < x < y < 1$, zero elsewhere be the joint p.d.f.of X and Y.Show that the correlation coefficient between X and Y is $\frac{1}{2}$
CO2	K5	17a.	Show that $\iint_{\mu}^{\infty} \frac{1}{\Gamma(k)} z^{k-1} e^{-z} dz = \sum_{x=0}^{k-1} \frac{\mu^x e^{-\mu}}{x!}, k=1,2,$ (OR)
CO2	K5	17b.	Let X and Y have a bivariate normal distribution with paramters μ_1 =3 and μ_2 =1, δ_1^2 =16, δ_2^2 =25 and $\rho = \frac{3}{5}$. Determine the following probabilities
CO3	K5	18a.	a.P _r (3< y <8) b. P _r (3< y <8/ x =7) c. P _r (-3< y <3) d. P _r (-3< y <3/ y =-4) Let the random variable X have the p.d.f f(x)=1,0< x < 1 and zero elsewhere and let X ₁ and X ₂ denote a random sample from this distribution .Find the joint p.d.f of the two random variables Y ₁ =X ₁ +X ₂ and Y ₂ =X ₁ -X ₂ .Find also the marginal p.d.f s of Y ₁ and Y ₂ .
CO3	K5	18b.	Derive Student's 't' distribution
CO4	K5	19a.	Let $Y_1 < Y_2$ denote the order statistics of a random sample of size 2 from $n(0, \sigma^2)$. Show that $E(Y_1) = \frac{-\sigma}{\sqrt{\pi}}$ and $E(Y_2) = \frac{\sigma}{\sqrt{\pi}}$ (OR)
CO4	K5	19b.	Let X_i (i=1,2,n) denote a random sample of size n from $n(\mu, \sigma^2)$. Show that $E(S^2)=(n-1)\frac{\sigma^2}{n}$, where S is the variance of the random variable
CO5	К6	20a.	Let S_n^2 denote the variance of a random sample of size n from $n(\mu, \sigma^2)$. Prove that $\frac{nS_n^2}{n-1}$ converges stochastically to σ^2
CO5	К6	20b.	State and Prove Central limit theorem